Источник света должен потреблять энергию. Свет — это электромагнитные волны с длиной волны 410-7 — 810-7 м. Электромагнитные волны излучаются при ускоренном движении заряженных частиц. Эти заряженные частицы входят в состав атомов. Но, не зная, как устроен атом, ничего достоверного о механизме излучения сказать нельзя.
Ясно лишь, что внутри атома нет света так же, как в струне рояля нет звука. Подобно струне, начинающей звучать лишь после удара молоточка, атомы рождают свет только после их возбуждения. Для того чтобы атом начал излучать, ему необходимо передать энергию.
Излучая, атом теряет полученную энергию, и для непрерывного свечения вещества необходим приток энергии к его атомам извне.
Тепловое излучение. Наиболее простой и распространенный вид излучения — тепловое излучение, при котором потери атомами энергии на излучение света компенсируются за счет энергии теплового движения атомов или излучающего тела. Чем выше температура тела, тем быстрее движутся атомы.
При столкновении быстрых атомов друг с другом часть их кинетической энергии превращается в энергию возбуждения атомов, которые затем излучают свет.
Тепловым источником излучения является Солнце, а также обычная лампа накаливания. Лампа очень удобный, но малоэкономичный источник. Лишь примерно 12% всей энергии, выделяемой в лампе электрическим током, преобразуется в энергию света. Тепловым источником света является пламя. Крупинки сажи раскаляются за счет энергии, выделяющейся при сгорании топлива, и испускают свет.
Электролюминесценция.
Энергия, необходимая атомам для излучения света, может заимствоваться и из нетепловых источников. При разряде в газах электрическое поле сообщает электронам большую кинетическую энергию. Быстрые электроны испытывают соударения с атомами. Часть кинетической энергии электронов идет на возбуждение атомов. Возбужденные атомы отдают энергию в виде световых волн.
Благодаря этому разряд в газе сопровождается свечением. Это и есть электролюминесценция. Катодолюминесценция.
Свечение твердых тел, вызванное бомбардировкой их электронами, называют катодолюминисенцией. Благодаря катодолюминесценции светятся экраны электронно-лучевых трубок телевизоров. Хемилюминесценция.
При некоторых химических реакциях, идущих с выделением энергии, часть этой энергии непосредственно расходуется на излучение света.
Источник света остается холодным . Это явление называется хемиолюминесценкией. Фотолюминесценция.
Падающий на вещество свет частично отражается, а частично поглощается. Энергия поглощаемого света в большинстве случаев вызывает лишь нагревание тел. Однако некоторые тела сами начинают светиться непосредственно под действием падающего на него излучения.
Это и есть фотолюминесценция. Свет возбуждает атомы вещества , после этого они высвечиваются сами.
Например, светящиеся краски, которыми покрывают многие елочные игрушки, излучают свет после их облучения. Излучаемый при фотолюминесценции свет имеет, как правило, большую длину волны, чем свет, возбуждающий свечение. Это можно наблюдать экспериментально.
Если направить на сосуд с флюоресцеитом световой пучок, пропущенный через фиолетовый светофильтр, то эта жидкость начинает светиться зелено — желтым светом, т. е. светом большей длины волны, чем у фиолетового света. Явление фотолюминесценции широко используется в лампах дневного света. Советский физик С. И. Вавилов предложил покрывать внутреннюю поверхность разрядной трубки веществами, способными ярко светиться под действием коротковолнового излучения газового разряда.
Лампы дневного света примерно в три-четыре раза экономичнее обычных ламп накаливания.
Перечислены основные виды излучений и источники, их создающие. Самые распространенные источники излучения — тепловые. Распределение энергии в спектре.
Ни один из источников не дает монохроматического света, т. е. света строго определенной длины волны. В этом нас убеждают опыты по разложению света в спектр с помощью призмы, а также опыты по интерференции и дифракции. Та энергия, которую несет с собой свет от источника, определенным образом распределена по волнам всех длин, входящим в состав светового пучка.
Можно также сказать, что энергия распределена по частотам, так как между длиной волны и частотой существует простая связь: ђv = c. Плотность потока электромагнитного излучения, или интенсивность /, определяется энергией &;;#038;W, приходящейся на все частоты. Для характеристики распределения излучения по частотам нужно ввести новую величину: интенсивность, приходящуюся на единичный интервал частот. Эту величину называют спектральной плотностью интенсивности излучения. Спектральную плотность потока излучения можно найти экспериментально.
Для этого надо с помощью призмы получить спектр излучения, например, электрической дуги, и измерить плотность потока излучения, приходящегося на небольшие спектральные интервалы шириной Av. Полагаться на глаз при оценке распределения энергии нельзя. Глаз обладает избирательной чувствительностью к свету: максимум его чувствительности лежит в желто-зеленой области спектра.
Лучше всего воспользоваться свойством черного тела почти полностью поглощать свет всех длин волн.
При этом энергия излучения вызывает нагревание тела. Поэтому достаточно измерить температуру тела и по ней судить о количестве поглощенной в единицу времени энергии. Обычный термометр имеет слишком малую чувствительность для того, чтобы его можно было с успехом использовать в таких опытах.
Нужны более чувствительные приборы для измерения температуры. Можно взять электрический термометр, в котором чувствительный элемент выполнен в виде тонкой металлической пластины. Эту пластину надо покрыть тонким слоем сажи, почти полностью поглощающей свет любой длины волны. Чувствительную к нагреванию пластину прибора следует поместить в то или иное место спектра.
Всему видимому спектру длиной l от красных лучей до фиолетовых соответствует интервал частот от vкр до уф. Ширине соответствует малый интервал Av. По нагреванию черной пластины прибора можно судить о плотности потока излучения, приходящегося на интервал частот Av.
Перемещая пластину вдоль спектра, мы обнаружим, что большая часть энергии приходится на красную часть спектра, а не на желто-зеленую, как кажется на глаз.
По результатам этих опытов можно построить кривую зависимости спектральной плотности интенсивности излучения от частоты. Спектральная плотность интенсивности излучения определяется по температуре пластины, а частоту нетрудно найти, если используемый для разложения света прибор проградуирован, т. е. если известно, какой частоте соответствует данный участок спектра. Откладывая по оси абсцисс значения частот, соответствующих серединам интервалов Av, а по оси ординат спектральную плотность интенсивности излучения, мы получим ряд точек, через которые можно провести плавную кривую.
Эта кривая дает наглядное представление о распределении энергии и видимой части спектра электрической дуги. Спектральные аппараты.
Для точного исследования спектров такие простые приспособления, как узкая щель, ограничивающая световой пучок, и призма, уже недостаточны. Необходимы приборы, дающие четкий спектр, т. е. приборы, хорошо разделяющие волны различной длины и не допускающие перекрытия отдельных участков спектра. Такие приборы называют спектральными аппаратами. Чаще всего основной частью спектрального аппарата является призма или дифракционная решетка. Рассмотрим схему устройства призменного спектрального аппарата.
Исследуемое излучение поступает вначале в часть прибора, называемую коллиматором. Коллиматор представляет собой трубу, на одном конце которой имеется ширма с узкой щелью, а на другом — собирающая линза. Щель находится на фокусном расстоянии от линзы.
Поэтому расходящийся световой пучок, попадающий на линзу из щели, выходит из нее параллельным пучком и падает на призму.